Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chin J Nat Med ; 22(4): 293-306, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658093

RESUMEN

Icariin, a flavonoid glycoside, is extracted from Epimedium. This study aimed to investigate the vascular protective effects of icariin in type 1 diabetic rats by inhibiting high-mobility group box 1 (HMGB1)-related inflammation and exploring its potential mechanisms. The impact of icariin on vascular dysfunction was assessed in streptozotocin (STZ)-induced diabetic rats through vascular reactivity studies. Western blotting and immunofluorescence assays were performed to measure the expressions of target proteins. The release of HMGB1 and pro-inflammation cytokines were measured by enzyme-linked immunosorbent assay (ELISA). The results revealed that icariin administration enhanced acetylcholine-induced vasodilation in the aortas of diabetic rats. It also notably reduced the release of pro-inflammatory cytokines, including interleukin-8 (IL-8), IL-6, IL-1ß, and tumor necrosis factor-alpha (TNF-α) in diabetic rats and high glucose (HG)-induced human umbilical vein endothelial cells (HUVECs). The results also unveiled that the pro-inflammatory cytokines in the culture medium of HUVECs could be increased by rHMGB1. The increased release of HMGB1 and upregulated expressions of HMGB1-related inflammatory factors, including advanced glycation end products (RAGE), Toll-like receptor 4 (TLR4), and phosphorylated p65 (p-p65) in diabetic rats and HG-induced HUVECs, were remarkably suppressed by icariin. Notably, HMGB1 translocation from the nucleus to the cytoplasm in HUVECs under HG was inhibited by icariin. Meanwhile, icariin could activate G protein-coupled estrogen receptor (GPER) and sirt1. To explore the role of GPER and Sirt1 in the inhibitory effect of icariin on HMGB1 release and HMGB-induced inflammation, GPER inhibitor and Sirt1 inhibitor were used in this study. These inhibitors diminished the effects of icariin on HMGB1 release and HMGB1-induced inflammation. Specifically, the GPER inhibitor also negated the activation of Sirt1 by icariin. These findings suggest that icariin activates GPER and increases the expression of Sirt1, which in turn reduces HMGB1 translocation and release, thereby improving vascular endothelial function in type 1 diabetic rats by inhibiting inflammation.


Asunto(s)
Diabetes Mellitus Experimental , Flavonoides , Proteína HMGB1 , Ratas Sprague-Dawley , Receptores de Cannabinoides , Receptores Acoplados a Proteínas G , Transducción de Señal , Sirtuina 1 , Animales , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Sirtuina 1/metabolismo , Sirtuina 1/genética , Flavonoides/farmacología , Transducción de Señal/efectos de los fármacos , Ratas , Masculino , Humanos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Citocinas/metabolismo , Epimedium/química
2.
J Pharmacol Sci ; 154(4): 316-325, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485350

RESUMEN

Diabetic nephropathy is a common complication of diabetes, accumulating evidence underscores the pivotal role of tubulointerstitial fibrosis in the progression of diabetic nephropathy. However, the underlying mechanisms remain incompletely understood. Although the mechanisms in diabetic nephropathy fibrosis have been the focus of many studies, only limited information is currently available concerning microRNA regulation in tubulointerstitial fibrosis. In this study, we aimed to investigate the roles of miR-320a-3p and bone morphogenetic protein-6 (BMP6) in tubulointerstitial fibrosis. After inducing fibrosis with high glucose in HK-2 cells, we found that miR-320a-3p is significantly up-regulated, whereas BMP6 is markedly down-regulated. These changes suggest close link between miR-320a-3p and BMP6 in tubulointerstitial fibrosis. To elucidate this phenomenon, miR-320a-3p mimic, inhibitor and siBMP6 were employed. We observed in miR-320a-3p mimic group the fibrosis marker include alpha smooth muscle actin and type I collagen was significantly up-regulated, whereas BMP6 exhibited the opposite trend. Additionally, we found icariin could alleviate tubulointerstitial fibrosis by downregulation the miR-320a-3p expression. In conclusion, miR-320a-3p promotes tubulointerstitial fibrosis during the development of DN by suppressing BMP signal pathway activity via inhibiting BMP6 expression. Suggesting that miR-320a-3p represents a potential therapeutic target for tubulointerstitial fibrosis induced by diabetic nephropathy.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Flavonoides , MicroARNs , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Diabetes Mellitus Experimental/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fibrosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...